最佳答案 ( 回答者: opposite469 )
设: 1/5+2/5^2+3/5^3+...+2004/5^2004 =S
5S=(1/5+2/5^2+3/5^3+...+2004/5^2004)x5=1+2/5+3/5^2+4/5^3+...+2004/5^2003
5S-S =1+1/5+1/5^2+1/5^3+1/5^4+...+1/5^2003-2004/5^2004
再设:1/5+1/5^2+1/5^3+1/5^4+...+1/5^2003=T
T=[1/5-(1/5^2003)x1/5]/(1-1/5)=(5/4)x(1/5-1/5^2004)=1/4-1/(4x5^2003)
4S=1-2004/5^2004+1/4-1/(4x5^2003)
=5/4-8021/(4x5^2004)
S=5/16-8021/(16x5^2004)
[ 本帖最后由 opposite469 于 2007-3-23 11:38 编辑 ].