俺也说不出个道道。
比如说,x^2+y^2=25
就要熟记3^2+4^2=5^2
但类似的太多,不可能都熟。
那咋办呢?
好在还有奇偶性可用
如x^2+y^2=720
720是偶数,所以x、y的奇偶性相同
即要么x=2m,y=2n,要么x=2m+1,y=2n+1
代入原方程,发现x、y不能是奇数
于是原方程转换成
m^2+n^2=180,x=2m,y=2n
再转换
p^2+q^2=45,m=2p,n=2q
此时p、q必是1奇1偶
不妨设p=2a+1,q=2b
得a^2+a+b^2=11
枚举得a=1,b=3
即x=3x2x2=12,y=6x2x2=24
由于x、y对称
可得(x,y)=(12,24),(24,12)
试求 x^2+y^2=485.