旺旺猜单词
NEW!
登录
帮助
旺旺网
»
初中(和小升初择校)
» 预初数学题
‹‹ 上一主题
|
下一主题 ››
发新话题
发布投票
发布商品
发起提问
发布活动
发布辩论
发布视频
打印
【有
0
个人次参与评价】
[求助]
预初数学题
1楼
echooooo
echooooo
(想学游泳的鱼) 发表于 2007-8-18 22:29
只看此人
预初数学题
能否将正整数1、2、3、......、64分别填入8x8的国际象棋盘的64个方格,使得形如图(方向可任意转置)的任意四个格内的数字之和总能被5整除。为什么?.
附件
t1.jpg
(4.3 KB)
2007-8-18 22:29
金币
48624 枚
违规
0 次
活跃度
6 0%
查看详细资料
TOP
2楼
老猫
老猫
(谦虚使人进步,骄傲使人快乐。) 发表于 2007-8-19 07:27
只看此人
我怀疑是不能的,回来再仔细做。
想法是:由于任意性,所以每个三个横线的中间那个的上下两个关于5的余数相同,同样每条三个竖线的中间那个的左右两个关于5的余数也相同。剩下的推推数量,应该可以证明了。.
金币
66561 枚
违规
0 次
活跃度
8 0%
查看个人网站
查看详细资料
TOP
3楼
echooooo
echooooo
(想学游泳的鱼) 发表于 2007-8-19 08:56
只看此人
回复 #2 老猫 的帖子
有启发。
由于任意性,任一数字的上下左右的四个数字关于5的余数相同。
假设有相邻的两个数A、B,设A关于5的余数为a(0、1、2、3、4),B关于5的余数为b(0、1、2、3、4)。
当a=1时,b=2;但当b=2时,a=4
当a=2时,b=4;但当b=4时,a=3
当a=3时,b=1;但当b=1时,a=2
当a=4时,b=3;但当b=3时,a=1
只有a=0,b=0时才能满足,但1~64关于5的余数不均为0,
所以结论是否定的。.
金币
48624 枚
违规
0 次
活跃度
6 0%
查看详细资料
TOP
4楼
老猫
老猫
(谦虚使人进步,骄傲使人快乐。) 发表于 2007-8-19 12:03
只看此人
哈哈,早上刚刚起床,的确脑子不清楚。
有你这句话,后面的讨论就不需要了。
假定可以,由于任一数字的上下左右四个数关于5的余数相同,所以几乎所有的黑格里的数关于5的余数相同,于是需要二十个以上的数关于5的余数相同,这是不可能的。.
金币
66561 枚
违规
0 次
活跃度
8 0%
查看个人网站
查看详细资料
TOP
5楼
echooooo
echooooo
(想学游泳的鱼) 发表于 2007-8-19 13:59
只看此人
这几天被这些题目都弄晕了
,估计不出几日就该缴械了。
.
金币
48624 枚
违规
0 次
活跃度
6 0%
查看详细资料
TOP
6楼
老猫
老猫
(谦虚使人进步,骄傲使人快乐。) 发表于 2007-8-19 19:13
只看此人
哈哈,这只是开始。
接下来有四年这样的生活。.
金币
66561 枚
违规
0 次
活跃度
8 0%
查看个人网站
查看详细资料
TOP
‹‹ 上一主题
|
下一主题 ››
控制面板首页
编辑个人资料
积分记录
公众用户组
个人空间管理
广告设置
基本概况
流量统计
客户软件
发帖量记录
版块排行
主题排行
发帖排行
积分排行
交易排行
在线时间
管理团队
管理统计